首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14629篇
  免费   1168篇
  国内免费   784篇
  2023年   160篇
  2022年   205篇
  2021年   685篇
  2020年   461篇
  2019年   591篇
  2018年   568篇
  2017年   408篇
  2016年   570篇
  2015年   854篇
  2014年   960篇
  2013年   1077篇
  2012年   1304篇
  2011年   1193篇
  2010年   747篇
  2009年   659篇
  2008年   742篇
  2007年   693篇
  2006年   591篇
  2005年   520篇
  2004年   458篇
  2003年   370篇
  2002年   327篇
  2001年   307篇
  2000年   253篇
  1999年   229篇
  1998年   145篇
  1997年   142篇
  1996年   145篇
  1995年   110篇
  1994年   111篇
  1993年   81篇
  1992年   134篇
  1991年   102篇
  1990年   78篇
  1989年   78篇
  1988年   63篇
  1987年   71篇
  1986年   64篇
  1985年   50篇
  1984年   48篇
  1983年   41篇
  1982年   24篇
  1981年   13篇
  1980年   16篇
  1979年   19篇
  1977年   14篇
  1976年   11篇
  1975年   9篇
  1973年   10篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
51.
The helicase superfamily 2 (SF2) proteins are involved in essentially every step in DNA and RNA metabolism. The radD (yejH) gene, which belongs to SF2, plays an important role in DNA repair. The RadD protein includes all seven conserved SF2 motifs and has shown ATPase activity. Here, we first reported the structure of RadD from Escherichia coli containing two RecA-like domains, a zinc finger motif, and a C-terminal domain. Based on the structure of RadD and other SF2 proteins, we then built a model of the RedD-ATP complex.  相似文献   
52.
Thromboxane and its receptor have emerged as key players in modulating vascular thrombotic events. Thus, a dysfunctional hTP genetic variant may protect against (hypoactivity) or promote (hyperactivity) vascular events, based upon its activity on platelets. After extensive in silico analysis, six hTP-α variants were selected (C68S, V80E, E94V, A160T, V176E, and V217I) for detailed biochemical studies based on structural proximity to key regions involved in receptor function and in silico predictions. Variant biochemical profiles ranged from severe instability (C68S) to normal (V217I), with most variants demonstrating functional alteration in binding, expression or activation (V80E, E94V, A160T, and V176E). In the absence of patient platelet samples, we developed and validated a novel megakaryocyte based system to evaluate human platelet function in the presence of detected dysfunctional genetic variants. Interestingly, variant V80E exhibited reduced platelet activation whereas A160T demonstrated platelet hyperactivity. This report provides the most comprehensive in silico, in vitro and “in platelet” evaluation of hTP variants to date and highlightscurrent inherent problems in evaluating genetic variants, with possible solutions. The study additionally provides clinical relevance to characterized dysfunctional hTP variants.  相似文献   
53.
54.
Among the modes of transmission available to the cytomegalovirus (CMV) is sexual transmission, primarily via semen. Both male-to-female (M-F) and male-to-male (M-M) sexual transmission significantly contribute toward the spread of CMV infections in the global population. Semen plays an important role in carrying the viral particle that invades the vaginal or rectal mucosa, thereby initiating viral replication. Both semen and seminal plasma (SP) can enhance HIV-1 infection in cell culture, and two amyloid fibrils, semen-derived enhancer of viral infection (SEVI) and amyloids derived from the semenogelins (SEM amyloids), have been identified as seminal factors sufficient to enhance HIV-1 infection (J. Munch et al., Cell 131:1059–1071, 2007; N. R. Roan et al., Cell Host Microbe 10:541–550, 2011; F. Arnold et al., J. Virol. 86:1244–1249, 2012). Whether SP, SEVI, or SEM amyloids can enhance other viral infections has not been extensively examined. In this study, we found that SP, SEVI, and SEM amyloids strongly enhance both human CMV (HCMV) and murine CMV infection in cell culture. SEVI and SEM amyloids increased infection rates by >10-fold, as determined by both flow cytometry and fluorescence microscopy. Viral replication was increased by 50- to 100-fold. Moreover, viral growth curve assays showed that SP, SEVI, and SEM amyloids sped up the kinetics of CMV replication such that the virus reached its replicative peak more quickly. Finally, we discovered that SEM amyloids and SEVI counteracted the effect of anti-gH in protecting against CMV infection. Collectively, the data suggest that semen enhances CMV infection through interactions between semen amyloid fibrils and viral particles, and these interactions may prevent HCMV from being neutralized by anti-gH antibody.  相似文献   
55.
This study investigated the protective effects of two polysaccharides (CPA-1 and CPB-2) from Cordyceps cicadae against high fructose/high fat diet (HF/HFD) induced obesity and metabolic disorders in rats. Rats were either fed with normal diet or HF/HFD and treated with CPA-1 and CPB-2 (100 and 300 mg/kg) for 11 weeks. Administration of CPA-1 and CPB-2 significantly and dose dependently reduced body and liver weight, insulin and glucose tolerance, serum insulin and glucose levels. Furthermore, serum and hepatic lipid profiles, liver function enzymes and proinflammatory cytokines (TNF-α, IL-1β and IL-6) were markedly reduced. Additionally, CPA-1 and CPB-2 treatment alleviated hepatic oxidative stress by reducing lipid peroxidation level (MDA) and upregulating glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities as well as ameliorated histological alterations through the reduction of hepatic lipid accumulation. These results suggested that the polysaccharides from C. cicadae showed protective effects against HF/HFD induced metabolic disturbances and may be considered as a dietary supplement for treating obesity.  相似文献   
56.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   
57.
58.
We announce a 4.63-Mb genome assembly of an isolated bacterium that is the first sequenced nicotine-degrading Arthrobacter strain. Nicotine catabolism genes of the nicotine-degrading plasmid pAO1 were predicted, but plasmid function genes were not found. These results will help to better illustrate the molecular mechanism of nicotine degradation by Arthrobacter.  相似文献   
59.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
60.
Hydrogen sulphide (H2S) inhibits vascular smooth muscle cell (VSMC) proliferation induced by hyperglycaemia and hyperlipidaemia; however, the mechanisms are unclear. Here, we observed lower H2S levels and higher expression of the proliferation-related proteins PCNA and cyclin D1 in db/db mouse aortae and vascular smooth muscle cells treated with 40 mmol/L glucose and 500 μmol/L palmitate, whereas exogenous H2S decreased PCNA and cyclin D1 expression. The nuclear translocation of mitochondrial pyruvate dehydrogenase complex-E1 (PDC-E1) was significantly increased in VSMCs treated with high glucose and palmitate, and it increased the level of acetyl-CoA and histone acetylation (H3K9Ac). Exogenous H2S inhibited PDC-E1 translocation from the mitochondria to the nucleus because PDC-E1 was modified by S-sulfhydration. In addition, PDC-E1 was mutated at Cys101. Overexpression of PDC-E1 mutated at Cys101 increased histone acetylation (H3K9Ac) and VSMC proliferation. Based on these findings, H2S regulated PDC-E1 S-sulfhydration at Cys101 to prevent its translocation from the mitochondria to the nucleus and to inhibit VSMC proliferation under diabetic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号